A graph theoretic approach to simulation and classification
نویسندگان
چکیده
A new class of discrete random fields designed for quick simulation and covariance inference under inhomogenous conditions is introduced and studied. Simulation of these correlated fields can be done in a single pass instead of relying on multi-pass convergent methods like the Gibbs Sampler or other Markov Chain Monte Carlo algorithms. The fields are constructed directly from an undirected graph with specified marginal probability mass functions and covariances between nearby vertices in a manner that makes simulation quite feasible yet maintains the desired properties. Special cases of these correlated fields have been deployed successfully in data authentication, object detection and CAPTCHA generation. Further applications in maximum likelihood estimation and classification such as optical character recognition are now given within.
منابع مشابه
A module theoretic approach to zero-divisor graph with respect to (first) dual
Let $M$ be an $R$-module and $0 neq fin M^*={rm Hom}(M,R)$. We associate an undirected graph $gf$ to $M$ in which non-zero elements $x$ and $y$ of $M$ are adjacent provided that $xf(y)=0$ or $yf(x)=0$. Weobserve that over a commutative ring $R$, $gf$ is connected anddiam$(gf)leq 3$. Moreover, if $Gamma (M)$ contains a cycle,then $mbox{gr}(gf)leq 4$. Furthermore if $|gf|geq 1$, then$gf$ is finit...
متن کاملExact annihilating-ideal graph of commutative rings
The rings considered in this article are commutative rings with identity $1neq 0$. The aim of this article is to define and study the exact annihilating-ideal graph of commutative rings. We discuss the interplay between the ring-theoretic properties of a ring and graph-theoretic properties of exact annihilating-ideal graph of the ring.
متن کاملA note on a graph related to the comaximal ideal graph of a commutative ring
The rings considered in this article are commutative with identity which admit at least two maximal ideals. This article is inspired by the work done on the comaximal ideal graph of a commutative ring. Let R be a ring. We associate an undirected graph to R denoted by mathcal{G}(R), whose vertex set is the set of all proper ideals I of R such that Inotsubseteq J(R), where J(R) is...
متن کاملSome results on the complement of a new graph associated to a commutative ring
The rings considered in this article are commutative with identity which are not fields. Let R be a ring. A. Alilou, J. Amjadi and Sheikholeslami introduced and investigated a graph whose vertex set is the set of all nontrivial ideals of R and distinct vertices I, J are joined by an edge in this graph if and only if either ann(I)J = (0) or ann(J)I = (0). They called this graph as a new graph as...
متن کاملSome results on a supergraph of the comaximal ideal graph of a commutative ring
Let R be a commutative ring with identity such that R admits at least two maximal ideals. In this article, we associate a graph with R whose vertex set is the set of all proper ideals I of R such that I is not contained in the Jacobson radical of R and distinct vertices I and J are joined by an edge if and only if I and J are not comparable under the inclusion relation. The aim of this article ...
متن کاملSOME RESULTS ON THE COMPLEMENT OF THE INTERSECTION GRAPH OF SUBGROUPS OF A FINITE GROUP
Let G be a group. Recall that the intersection graph of subgroups of G is an undirected graph whose vertex set is the set of all nontrivial subgroups of G and distinct vertices H,K are joined by an edge in this graph if and only if the intersection of H and K is nontrivial. The aim of this article is to investigate the interplay between the group-theoretic properties of a finite group G and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 70 شماره
صفحات -
تاریخ انتشار 2014